分布式作业系统 Elastic-Job-Lite 源码分析 —— 作业分片策略

老艿艿 芋道源码 2018-10-29

点击上方“芋道源码”,选择“置顶公众号”

技术文章第一时间送达!

源码精品专栏

 

摘要: 原创出处 http://www.iocoder.cn/Elastic-Job/job-sharding-strategy/ 「芋道源码」欢迎转载,保留摘要,谢谢!

本文基于 Elastic-Job V2.1.5 版本分享

  • 1. 概述

  • 2. 自带作业分片策略

  • 3. 自定义作业分片策略

  • 666. 彩蛋


1. 概述

本文主要分享 Elastic-Job-Lite 作业分片策略

涉及到主要类的类图如下( 打开大图 ):

你行好事会因为得到赞赏而愉悦 
同理,开源项目贡献者会因为 Star 而更加有动力 
为 Elastic-Job 点赞!传送门

2. 自带作业分片策略

JobShardingStrategy,作业分片策略接口。分片策略通过实现接口的 #sharding(...) 方法提供作业分片的计算

public interface JobShardingStrategy {

    /**
     * 作业分片.
     * 
     * @param jobInstances 所有参与分片的单元列表
     * @param jobName 作业名称
     * @param shardingTotalCount 分片总数
     * @return 分片结果
     */

    Map> sharding(List jobInstances, String jobName, int shardingTotalCount);
}

Elastic-Job-Lite 提供三种自带的作业分片策略:

  • AverageAllocationJobShardingStrategy:基于平均分配算法的分片策略。

  • OdevitySortByNameJobShardingStrategy:根据作业名的哈希值奇偶数决定IP升降序算法的分片策略。

  • RotateServerByNameJobShardingStrategy:根据作业名的哈希值对作业节点列表进行轮转的分片策略。

2.1 AverageAllocationJobShardingStrategy

AverageAllocationJobShardingStrategy,基于平均分配算法的分片策略。Elastic-Job-Lite 默认的作业分片策略

如果分片不能整除,则不能整除的多余分片将依次追加到序号小的作业节点。如: 
如果有3台作业节点,分成9片,则每台作业节点分到的分片是:1=[0,1,2], 2=[3,4,5], 3=[6,7,8] 
如果有3台作业节点,分成8片,则每台作业节点分到的分片是:1=[0,1,6], 2=[2,3,7], 3=[4,5] 
如果有3台作业节点,分成10片,则每台作业节点分到的分片是:1=[0,1,2,9], 2=[3,4,5], 3=[6,7,8]

代码实现如下:

public final class AverageAllocationJobShardingStrategy implements JobShardingStrategy {

    @Override
    public Map> sharding(final List jobInstances, final String jobName, final int shardingTotalCount) {
        // 不存在 作业运行实例
        if (jobInstances.isEmpty()) {
            return Collections.emptyMap();
        }
        // 分配能被整除的部分
        Map> result = shardingAliquot(jobInstances, shardingTotalCount);
        // 分配不能被整除的部分
        addAliquant(jobInstances, shardingTotalCount, result);
        return result;
    }
}
  • 调用 #shardingAliquot(...) 方法分配能被整除的部分。能整除的咱就不举例子。如果有 3 台作业节点,分成 8 片,被整除的部分是前 6 片 [0, 1, 2, 3, 4, 5],调用该方法结果:1=[0,1], 2=[2,3], 3=[4,5]。

    private Map> shardingAliquot(final List shardingUnits, final int shardingTotalCount) {
       Map> result = new LinkedHashMap<>(shardingTotalCount, 1);
       int itemCountPerSharding = shardingTotalCount / shardingUnits.size(); // 每个作业运行实例分配的平均分片数
       int count = 0;
       for (JobInstance each : shardingUnits) {
           List shardingItems = new ArrayList<>(itemCountPerSharding + 1);
           // 顺序向下分配
           for (int i = count * itemCountPerSharding; i < (count + 1) * itemCountPerSharding; i++) {
               shardingItems.add(i);
           }
           result.put(each, shardingItems);
           count++;
       }
       return result;
    }
  • 调用 #addAliquant(...) 方法分配能不被整除的部分。继续上面的例子。不能被整除的部分是后 2 片 [6, 7],调用该方法结果:1=[0,1] + [6], 2=[2,3] + [7], 3=[4,5]。

    private void addAliquant(final List shardingUnits, final int shardingTotalCount, final Map> shardingResults) {
       int aliquant = shardingTotalCount % shardingUnits.size(); // 余数
       int count = 0;
       for (Map.Entry> entry : shardingResults.entrySet()) {
           if (count < aliquant) {
               entry.getValue().add(shardingTotalCount / shardingUnits.size() * shardingUnits.size() + count);
           }
           count++;
       }
    }

如何实现主备

通过作业配置设置总分片数为 1 ( JobCoreConfiguration.shardingTotalCount = 1 ),只有一个作业分片能够分配到作业分片项,从而达到一主N备

2.2 OdevitySortByNameJobShardingStrategy

OdevitySortByNameJobShardingStrategy,根据作业名的哈希值奇偶数决定IP升降序算法的分片策略。

作业名的哈希值为奇数则IP 降序
作业名的哈希值为偶数则IP 升序
用于不同的作业平均分配负载至不同的作业节点. 
如:

  1. 如果有3台作业节点, 分成2片, 作业名称的哈希值为奇数, 则每台作业节点分到的分片是: 1=[ ], 2=[1], 3=[0].

  2. 如果有3台作业节点, 分成2片, 作业名称的哈希值为偶数, 则每台作业节点分到的分片是: 1=[0], 2=[1], 3=[ ].

实现代码如下:

@Override
public Map> sharding(final List jobInstances, final String jobName, final int shardingTotalCount) {
   long jobNameHash = jobName.hashCode();
   if (0 == jobNameHash % 2) {
       Collections.reverse(jobInstances);
   }
   return averageAllocationJobShardingStrategy.sharding(jobInstances, jobName, shardingTotalCount);
}
  • 从实现代码上,仿佛和 IP 升降序没什么关系?答案在传递进来的参数 jobInstancesjobInstances 已经是按照 IP 进行降序的数组。所以当判断到作业名的哈希值为偶数时,进行数组反转( Collections#reverse(...) )实现按照 IP 升序。下面看下为什么说jobInstances 已经按照 IP 进行降序

    // ZookeeperRegistryCenter.java
    @Override
    public List getChildrenKeys(final String key) {
       try {
           List result = client.getChildren().forPath(key);
           Collections.sort(result, new Comparator() {
           @Override
           public int compare(final String o1, final String o2) {
               return o2.compareTo(o1);
           }
       });
       return result;
       } catch (final Exception ex) {
           RegExceptionHandler.handleException(ex);
           return Collections.emptyList();
       }
    }
  • 调用 AverageAllocationJobShardingStrategy#sharding(…) 方法完成最终作业分片计算。

2.3 RotateServerByNameJobShardingStrategy

RotateServerByNameJobShardingStrategy,根据作业名的哈希值对作业节点列表进行轮转的分片策略。这里的轮转怎么定义呢?如果有 3 台作业节点,顺序为 [0, 1, 2],如果作业名的哈希值根据作业分片总数取模为 1, 作业节点顺序变为 [1, 2, 0]。

分片的目的,是将作业的负载合理的分配到不同的作业节点上,要避免分片策略总是让固定的作业节点负载特别大,其它工作节点负载特别小。这个也是为什么官方对比 RotateServerByNameJobShardingStrategy、AverageAllocationJobShardingStrategy 如下:

AverageAllocationJobShardingStrategy的缺点是,一旦分片数小于作业作业节点数,作业将永远分配至IP地址靠前的作业节点,导致IP地址靠后的作业节点空闲。如: 
OdevitySortByNameJobShardingStrategy则可以根据作业名称重新分配作业节点负载。 
如果有3台作业节点,分成2片,作业名称的哈希值为奇数,则每台作业节点分到的分片是:1=[0], 2=[1], 3=[] 
如果有3台作业节点,分成2片,作业名称的哈希值为偶数,则每台作业节点分到的分片是:3=[0], 2=[1], 1=[]

实现代码如下:

public final class RotateServerByNameJobShardingStrategy implements JobShardingStrategy {

    private AverageAllocationJobShardingStrategy averageAllocationJobShardingStrategy = new AverageAllocationJobShardingStrategy();

    @Override
    public Map> sharding(final List jobInstances, final String jobName, final int shardingTotalCount) {
        return averageAllocationJobShardingStrategy.sharding(rotateServerList(jobInstances, jobName), jobName, shardingTotalCount);
    }

    private List rotateServerList(final List shardingUnits, final String jobName) {
        int shardingUnitsSize = shardingUnits.size();
        int offset = Math.abs(jobName.hashCode()) % shardingUnitsSize; // 轮转开始位置
        if (0 == offset) {
            return shardingUnits;
        }
        List result = new ArrayList<>(shardingUnitsSize);
        for (int i = 0; i < shardingUnitsSize; i++) {
            int index = (i + offset) % shardingUnitsSize;
            result.add(shardingUnits.get(index));
        }
        return result;
    }
}
  • 调用 #rotateServerList(…) 实现作业节点数组轮转

  • 调用 AverageAllocationJobShardingStrategy#sharding(…) 方法完成最终作业分片计算。

3. 自定义作业分片策略

可能在你的业务场景下,需要实现自定义的作业分片策略。通过定义类实现 JobShardingStrategy 接口即可:

public final class OOXXShardingStrategy implements JobShardingStrategy {

    @Override
    public Map> sharding(final List jobInstances, final String jobName, final int shardingTotalCount) {
        // 实现逻辑
    }

}

实现后,配置实现类的全路径到 Lite作业配置( LiteJobConfiguration )的 jobShardingStrategyClass 属性。

作业进行分片计算时,作业分片策略工厂( JobShardingStrategyFactory ) 会创建作业分片策略实例:

public final class JobShardingStrategyFactory {

    /**
     * 获取作业分片策略实例.
     * 
     * @param jobShardingStrategyClassName 作业分片策略类名
     * @return 作业分片策略实例
     */

    public static JobShardingStrategy getStrategy(final String jobShardingStrategyClassName) {
        if (Strings.isNullOrEmpty(jobShardingStrategyClassName)) {
            return new AverageAllocationJobShardingStrategy();
        }
        try {
            Class jobShardingStrategyClass = Class.forName(jobShardingStrategyClassName);
            if (!JobShardingStrategy.class.isAssignableFrom(jobShardingStrategyClass)) {
                throw new JobConfigurationException("Class '%s' is not job strategy class", jobShardingStrategyClassName);
            }
            return (JobShardingStrategy) jobShardingStrategyClass.newInstance();
        } catch (final ClassNotFoundException | InstantiationException | IllegalAccessException ex) {
            throw new JobConfigurationException("Sharding strategy class '%s' config error, message details are '%s'", jobShardingStrategyClassName, ex.getMessage());
        }
    }
}

666. 彩蛋

旁白君:雾草,刚夸奖你,就又开始水更。 
芋道君:咳咳咳,作业分片策略炒鸡重要的好不好!嘿嘿嘿,为《Elastic-Job-Lite 源码分析 —— 作业分片》做个铺垫嘛。

道友,赶紧上车,分享一波朋友圈!




如果你对 Dubbo / Netty 等等源码与原理感兴趣,欢迎加入我的知识星球一起交流。长按下方二维码噢


目前在知识星球更新了《Dubbo 源码解析》目录如下:

01. 调试环境搭建
02. 项目结构一览
03. 配置 Configuration
04. 核心流程一览

05. 拓展机制 SPI

06. 线程池

07. 服务暴露 Export

08. 服务引用 Refer

09. 注册中心 Registry

10. 动态编译 Compile

11. 动态代理 Proxy

12. 服务调用 Invoke

13. 调用特性 

14. 过滤器 Filter

15. NIO 服务器

16. P2P 服务器

17. HTTP 服务器

18. 序列化 Serialization

19. 集群容错 Cluster

20. 优雅停机

21. 日志适配

22. 状态检查

23. 监控中心 Monitor

24. 管理中心 Admin

25. 运维命令 QOS

26. 链路追踪 Tracing

... 一共 69+ 篇

目前在知识星球更新了《Netty 源码解析》目录如下:

01. 调试环境搭建
02. NIO 基础
03. Netty 简介
04. 启动 Bootstrap

05. 事件轮询 EventLoop

06. 通道管道 ChannelPipeline

07. 通道 Channel

08. 字节缓冲区 ByteBuf

09. 通道处理器 ChannelHandler

10. 编解码 Codec

11. 工具类 Util

... 一共 61+ 篇


目前在知识星球更新了《数据库实体设计》目录如下:


01. 商品模块
02. 交易模块
03. 营销模块
04. 公用模块

... 一共 17+ 篇


目前在知识星球更新了《Spring 源码解析》目录如下:


01. 调试环境搭建
02. IoC Resource 定位
03. IoC BeanDefinition 载入

04. IoC BeanDefinition 注册

05. IoC Bean 获取

06. IoC Bean 生命周期

... 一共 35+ 篇


源码不易↓↓↓

点赞支持老艿艿↓↓


    本站仅按申请收录文章,版权归原作者所有
    如若侵权,请联系本站删除
    觉得不错,分享给更多人看到